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Abstract
It has been suggested that children with larger brains tend to perform better on IQ tests or
cognitive function tests. Prenatal head growth and head growth in infancy are two crucial periods
for subsequent intelligence. Studies have shown that environmental exposure to air pollutants
during pregnancy is associated with fetal growth reduction, developmental delay, and reduced IQ.
Meanwhile, genetic polymorphisms may modify the effect of environment on head growth.
However, studies on gene–environment or gene–gene interactions on growth trajectories have
been quite limited partly due to the difficulty to quantitatively measure interactions on growth
trajectories. Moreover, it is known that assessing the significance of gene–environment or gene–
gene interactions on cross-sectional outcomes empirically using the permutation procedures may
bring substantial errors in the tests. We proposed a score that quantitatively measures interactions
on growth trajectories and developed an algorithm with a parametric bootstrap procedure to
empirically assess the significance of the interactions on growth trajectories under the likelihood
framework. We also derived a Wald statistic to test for interactions on growth trajectories and
compared it to the proposed parametric bootstrap procedure. Through extensive simulation
studies, we demonstrated the feasibility and power of the proposed testing procedures. We applied
our method to a real dataset with head circumference measures from birth to age 7 on a cohort
currently being conducted by the Columbia Center for Children's Environmental Health (CCCEH)
in Krakow, Poland, and identified several significant gene–environment interactions on head
circumference growth trajectories.
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INTRODUCTION
Several studies in children have suggested that children with larger brains, measured as head
circumference or with MRI, tend to score higher on IQ tests or cognitive function tests
[Fisch et al., 1976; Gale et al., 2004, 2006; Reiss et al., 1996; Weinberg et al., 1974]. It has
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also been suggested that the extent of prenatal head growth and head growth in infancy is
the most important for subsequent intelligence [Gale et al., 2006]. Impaired brain growth in
utero and in infancy may lead to poorer cognitive function in childhood [Fisch et al., 1976;
Gale et al., 2004, 2006; Lundgren et al., 2001; Reiss et al., 1996; Weinberg et al., 1974]. It is
also known that brain volume is usually achieved at its maximal value between the ages of 5
and 10 years, but rates of brain growth are highest in the last part of gestation and the first
year of life [Lemire et al., 1975]. Therefore, the factors that affect brain growth during these
crucial periods might influence subsequent intelligence.

Laboratory studies exposing experimental animals to polycyclic aromatic hydrocarbons
(PAH), a widespread class of combustion-related pollutants commonly found in air, food,
and drinking water [International Agency for Research on Cancer, 1993], during the prenatal
and neonatal periods have reported neurodevelopmental and behavioral effects, including
impairment of memory and ability to learn [Brown et al., 2007; Wormley et al., 2004]. In
humans, as reported previously, in the Columbia Center for Children's Environmental
Health New York City (CCCEH NYC) cohort, transplacental PAH exposure has been
shown to be associated with fetal growth reduction, including reduced birth weight and birth
head circumference and/or small size for gestational age [Choi et al., 2006; Dejmek et al.,
2000; Perera et al., 1998; Tang et al., 2006], and has been associated with developmental
delay at age 3 and reduced IQ at age 5 [Perera et al., 2006, 2009]. In the CCCEH cohorts,
marked inter-individual variation in response to the same level of PAH exposures was
observed, indicating possible involvement of genetic components that interact with
environmental factors to determine the outcome of the response.

Research has been done to identify specific genes that mediate the growth and
developmental trajectories of a trait [Li et al., 2009; Wu and Hou, 2006; Wu et al., 2004;
Zhao et al., 2005]. However, there has been no adequate exploration of how to map genes
that modify environmental effects/genetic effects on growth trajectories. The challenge in
studying gene–gene or gene–environment interactions on growth trajectory, a special type of
“trait” with longitudinal measurements, lies in two aspects: how to quantitatively measure
interaction effects on growth trajectories, and how to test the significance of the interactions
on growth trajectories. We and other researchers have noticed that some proposed
permutation tests being applied to assess the significance of gene–gene or gene–environment
interactions on cross-sectional outcomes may bring substantial errors in the tests [Buzkova
et al., 2011]. In this paper, we first proposed a score that quantitatively measures interactions
on growth trajectories. We then proposed a parametric bootstrap procedure to assess the
significance of gene–gene or gene–environment interactions on growth trajectories under the
likelihood framework. We also derived a Wald statistic to test for interactions on growth
trajectories and compared it to the proposed parametric bootstrap procedure. Note that in
situations when a growth trajectory is modeled using a complicated nonlinear function
involving multiple parameters, it may be difficult to obtain a test statistic with a closed-form
expression to test for gene–gene or gene–environment interactions. In that case, the
proposed parametric bootstrap procedure, although less computationally efficient, will be
able to handle the more complicated growth functions with multiple parameters. In modeling
head circumference measured over time, we applied a well-developed mathematical function
on physical growth [Von, 1957]. We demonstrated the feasibility and power of the proposed
method through extensive simulation studies and an application to a real data set with head
circumference measures from birth to age 7 from the Polish cohort currently being
conducted by CCCEH in Krakow, Poland.

We also want to emphasize that although the proposed method was motivated and applied to
detect gene–environment interactions on head circumference growth trajectories, it is readily
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applied to other growth trajectories and to detect gene–gene interactions on growth
trajectories.

MATERIALS AND METHODS
MODEL

The phenotypic value of head circumference of individual i measured at time t with the
consideration of the interaction between a gene and a dichotomous environmental exposure
can be modeled as:

(1)

where ξijk is the indicator variable defined as 1 if individual i has genotypic value j (here we
consider a dominant genetic model with j = 1 for genotypes AA and Aa, and j = 0 for
genotype aa under the assumption of a bi-allelic marker having a high-risk allele A and a
low-risk allele a, where the high-risk allele is the minor allele in the cohort) and
environmental exposure level k (k 0,1, 1 as exposed or high exposure, 0 as unexposed or
low=exposure); gjk(t) is a function of time representing the mean growth curve of head
circumference of individuals having genotypic value j and environmental exposure level k;
ei(t) is the individual residual at time t.

We model the head circumference growth using the following logistic function:

(2)

with parameters ajk, bjk, and cjk, j = 0, 1; k = 0, 1. Here ajk is the limiting value of gjk when t
→ ∞, which can be viewed as the head circumference of grown ups; ajk/(1 + bjk) is the
initial value of gjk when t = 0, which can be viewed as the head circumference of newborns;
and cjk is the relative growth rate [Von, 1957]. This logistic equation has been widely
applied to model physical growth including weight, height and head circumference [Li et al.,
2009; Wu and Hou, 2006; Wu et al., 2004; Zhao et al., 2005]. Note that there are four sets of
parameters with each parameter set specifying one of the four growth curves, corresponding
to four possible gene and environment combinations. This model setting can also be used for
interactions involving the recessive genetic model, but not additive genetic model when
there are three genotypic values.

The individual residuals for the same subject are assumed to be correlated over time
following an autoregressive AR(1) model, that is, ei(t) = ρei(t – 1) + εi(t), where ρ is the
autoregressive parameter and εi (t) are independent errors normally distributed with mean 0
and variance σ2.

With these assumptions, the likelihood function for n children's head circumference growth
data is:

(3)

where yi is the data vector of head circumferences of individual i measured over time; Li is
the length of yi; μjk is the mean vector of head circumferences for individuals with
genotypic value j and environmental exposure level k computed from gjk, and Σi is the
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covariance matrix of yi. In practice, such as in the CCCEH Polish cohort, children were
measured at ages 0, 3, 4, 5, 6, and 7. As there is possible missingness for each subject at
different time points, the length of yi, Li, may vary for different children. So does the length
of μjk and the dimension of Σi.

ESTIMATING PROCEDURE
We used the maximum likelihood method to estimate the unknown parameters, n = (a00, b00,
c00, a01, b01, c01, a10, b10, c10, a11, b11, c11, σ2, ρ). It could be difficult to derive a close form
for the maximizer of (3) with constraint; therefore, we used numerical analysis to obtain the
maximum likelihood estimator (MLE). We applied the SOLNP algorithm [Murtagh and
Saunders, 1987; Robinson, 1972; Ye, 1987] to estimate parameters under nonlinear
constraints for both constrained (under the null hypothesis) and unconstrained optimization
(under the alternative hypothesis).

SDA AND HYPOTHESIS TESTING
We are interested in testing the interaction effects between genes and environmental
exposures on growth trajectories. We first quantitatively defined a growth curve outcome of
a child using the area under the growth curve. We then introduced the concept of Second-
order Difference of Areas-under-the-curve (SDA) to quantitatively capture the strength of
gene–environment interactions on growth trajectories based on the definition of interactions,
that is, the difference of the effects of environment on growth curves with different
genotypic values:

(4)

where T is the endpoint of the study. Here “first-order difference” was referred to as the
effect of environment on growth curves for a given genotypic value, that is, the difference
between the areas under the two growth curves with two environmental conditions for a
given genotypic value. The “second-order difference” was then referred to as the difference
between the two “first-order differences” for the two genotypic values. In (4), the first term
on the right side in the bracket represents the environmental effect with genotypic value 0,
where a positive value means children with environmental condition 0 have bigger area
under the growth curve than those of the children with environmental condition 1. These
children with environmental condition 0 could either be growing faster, or growing bigger in
the end. While the second term in the bracket represents that with genotypic value 1. The
second-order difference, SDA, therefore, reflects the strength of the interaction effect on
growth curves similarly as the regression coefficient of the cross-product term that defines
interaction in a regression framework. When SDA = 0, that means the difference of the
effects of environment on growth curves with different genotypic values is 0. That is, genes
do not modify the effect of the environment on growth trajectories. The bigger the SDA
value, the stronger the interaction effect on growth trajectories. Thus, we test the following
hypotheses: H0 : SDA = 0 vs. H1 : SDA ≠ 0 to test gene–environment interactions on growth
trajectories.

With (â00, b̂00, ĉ00, â01, b̂01, ĉ01, â10, b̂10, ĉ10, â11, b̂11, ĉ11) estimated from data, we can
compute ĝ00, ĝ01, ĝ10, andĝ11, and estimate SDA. In our case, SDA is a closed-form
function of the parameters, so we used the Wald test to test SDA = 0 (for detailed derivation
of the Wald statistic see Appendix). However, for other types of growth functions, there may
not be a closed-form expression for SDA and it will be difficult to obtain the theoretical
distribution of the estimated SDA under the null hypothesis. Also, existing proposed
permutation tests being applied to assessing the significance of gene–environment
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interactions on cross-sectional outcomes may bring substantial errors in the tests [Buzkova
et al., 2011]. In such situations, we proposed a parametric bootstrap procedure to assess the
significance of gene–environment interactions.

Step 1: Estimate the unconstrained MLE of parameters under H1, denoted as ηalt, and
compute the estimated SDA, which we denote as SDAobs.

Step 2: Estimate the constrained MLE of parameters under H0, denoted as ηnull.

Step 3: Generate , vectors of data on all possible time points, based on model (1) with
parameters ηnull, i = 1, . . . , n, and b = 1, . . . , B. Here n is the number of children, and B is

the number of bootstrap samples. For each bootstrap sample , compute the
estimated SDA, denoted as .

Step 4: Compute the P-value for testing H0 : SDA = 0 vs. H1 : SDA ≠ 0 as the percentage of

( ) that are greater than |SDAobs|, where we take the absolute value of
SDA.

SIMULATION STUDIES
We compared the performance of the Wald test and the proposed testing procedures to test
gene–environment interactions on head circumference growth trajectories with extensive
simulation studies and a real data application. All simulation studies and real data analysis
were conducted using Matlab (7.8.0).

CONSTRAINED AND UNCONSTRAINED MLES
We first evaluated the performance of the SOLNP algorithm on unconstrained (under H1)
and constrained (under H0) optimizations under nonlinear constraints. Specifically, for a
given set of parameters η0, we generated 1,000 datasets with n = 500 children, each having
10 head circumference measures from ages 0 to 9. The head circumference measure at each
time point was generated using the model (1). The genotypic value of each child was
generated from a Bernoulli distribution Bernoulli (0.4) to mimic the distribution of some of
the genetic polymorphism data in the CCCEH Polish cohort. That is, for some genetic
polymorphisms, about 40% of the cohort has genotypes AA or Aa, corresponding to a minor
allele frequency of 0.22. The environmental exposure level of each child was generated from
Bernoulli (0.6). For each simulated dataset, we applied the SOLNP algorithm to obtain the
unconstrained MLE  under H1 : SDA ≠ 0 and the constrained MLE  under H0 : SDA
= 0. The SOLNP algorithm requires an upper and a lower bound, as well as an initial value
for each parameter. All parameters ajk, bjk, and cjk j = 0,1, and k = 0,1 are positive. In
addition, since ajk is the head circumference of adults, and the largest known normal head
circumference is 63.5 cm [Bushby et al., 1992], we specified the upper bounds for ajk to be
65 cm. The bounds for σ2 and ρ are (0, ∞) and (–1, 1). We used two types of initial values
in our simulation studies and compared their estimation results. In the first type, the true
parameter values were set as the initial values. In the second type, we obtained the initial
values based on a crude estimation with sample means or based on the scientific meanings
of the parameters. We denoted the initial values of parameters by an upper check, for
example, the initial values of ajk, ăjk is the largest head circumference in each gene–
environment combination inflated by a small factor of 1.01. We took the mean of head
circumferences measured at age 0 in each combination to be ăjk/(1 + b̆jk), and solved for b̆jk.

We then regressed  against t and took the slope to be c̆jk. After plugging
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ăjk, b̆jk, and c̆jk in gjk(t), we could obtain residuals ĕi(t) = yi(t) – ğjk(t), and  and  are the
sample variance and lag 1 autocorrelation of ĕi(t). The optimization results using these two
types of initial values are presented in Table I using one hypothetical parameter setting.

As we can see, parameter estimates using both types of initial values are very close to the
true values. As expected, the scenario with the true parameter values as the initial values has
slightly more accurate estimates than the scenario with the crude estimates as the initial
values. Thus, the estimation procedure with the SOLNP algorithm is satisfactory.

TYPE I ERROR
We used two sets of parameters to assess the Type I error of the proposed testing procedures
(Table II), where the theoretical SDA is zero under the null hypothesis of no gene–
environment interactions on head circumference growth trajectories. We simulated 1,000
datasets each having n = 500 children and applied both the Wald statistic and the parametric
bootstrap method previously described to each simulated dataset. With each simulated
dataset for the parametric bootstrap procedures, we repeated B = 1,000 times. The Type I
errors were estimated as the percentage of times the null hypothesis was rejected, that is, the
asymptotic P-value using the Wald statistic and the empirical P-value based on the 1,000
parametric bootstraps is less than 0.05. Both types of initial value estimation were
considered in the simulation studies.

Table III displays estimated Type I error rates to detect gene–environment interactions on
head circumference growth trajectories as well as the mean and SD of SDAobs for each
parameter set. With both parameter sets, the nominal Type I error rate 0.05 was well
controlled with both types of initial values examined using the parametric bootstrap
procedure. However, the Type I error rate was inflated by about 2% when we used the Wald
test and the crude estimates as the initial values. This might be due to the estimation bias in
SDA caused by the less-accurate initial values of the crude estimates. The parametric
bootstrap procedure is not sensitive to the estimation bias caused by the initial values
because all bootstrap samples have this bias and the P-values are obtained through
comparisons. The mean SDAobs was estimated more accurately with the true parameter
values being the initial values as expected. The SDs of SDAobs are fairly stable with both
types of initial values.

POWER
To examine the power of the proposed testing procedure, we considered different effect
sizes of gene–environment interactions, SDA = 2.5, 3.5, 5, and 10 on head circumference
growth trajectories, where we varied either ajk, the limiting value of head circumference, or
bjk and cjk, the relative growth rate. That is, some children may end up having bigger heads
in adulthood than others; some children may grow faster than others. The different
parameter settings considered are summarized in Table IV. Table V presents estimated
power under the corresponding parameter settings considered, together with the mean and
SD of SDAobs using two types of initial values. As we expected, the power increases as
SDA increases. When SDA reaches 5, the power is greater than 80%. It is also shown that
using initial values from a crude estimation provided comparable results as using the true
parameter values as the initial values. Therefore, in the subsequent real data analysis, we feel
confident that it is appropriate to use the proposed crude estimation procedure for initial
values. We note that the power of the Wald test is very close to that of the parametric
bootstrap procedures.
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REAL DATA APPLICATION
The proposed method was applied to detect gene–environment interactions on head
circumference growth trajectories from birth through age 7 with the Krakow Polish cohort
currently being conducted by CCCEH. Eligible pregnant women entered the study at the
beginning stage of their pregnancy. During the second or third trimesters, the women carried
a backpack containing a portable personal exposure air monitor during the day and kept it
near the bed at night during a consecutive 48-hr period for PAH measurements. Fifteen
common genetic polymorphisms in candidate genes that play important roles in the
metabolic activation of PAHs and PAH detoxification were selected (Table VI). Some of the
genetic polymorphisms were previously analyzed on PAH-DNA adducts, an indicator of
DNA damage [Wang et al., 2008, 2010]. The data set consists of 356 children who have at
least two head circumference measurements at ages 0, 3, 4, 5, 6, and 7 and have
environmental exposure information. The cohort is currently being followed up and will
have more head circumference measurements as study continues. PAH measures were
dichotomized at median to obtain a binary PAH exposure, defined as PAH high or PAH low
similar to our previous study [Wang et al., 2008]. The number of bootstrap samples was set
at 1,000, and we used the crude estimation method previously described to obtain initial
values of the parameters in the optimization procedures.

Table VII presents the estimated SDAs, which are the measures of the strength of the gene–
environment interactions on head circumference growth trajectories, and the corresponding
P-values from the parametric bootstrap procedures and the Wald test on the 15 markers
using the proposed method. Although the two sets of results using the Wald test and the
parametric bootstrap are very close to each other, three markers, rs162549, rs1056836, and
GSTT1, deletion significantly interact with the environmental exposure at the 0.05
significance level on head circumference growth trajectories using the parametric bootstrap
procedures, while only the last two markers significantly interact with the environmental
exposure using the Wald test. We plotted the estimated head circumference growth curves of
the four gene–environment combinations together with the observed head circumference
measurements for the significant rs1056836/GSTT1 deletion and environment interactions
(Figure 1). For example, the estimated effect size of GSTT1 deletion-PAH interaction is
almost SDA of 11. More specifically, within the PAH low exposure group, children who
have GSTT1 deleted have a much slower growth rate in head circumference compared to
that of children with GSTT1 not deleted; while within the PAH high exposure group,
children who have GSTT1 deleted have a similar growth rate in head circumference
compared to that of children with GSTT1 not deleted.

DISCUSSION
It is known that most human traits are likely under the control of several genetic factors as
well as environmental factors, which interact among each other to influence these traits. To
study childhood growth is an important research topic. However, studies on gene–gene or
gene–environment interactions on childhood growth have been quite limited. There are two
major challenges in study interactions on growth trajectories: how to quantitatively define
interactions on growth trajectories, and how to assess the significance of the interactions on
growth trajectories.

In this study, we first proposed a score SDA to quantitatively measure interaction effects on
the special type of “trait,” growth trajectories. We then proposed a parametric bootstrap
procedure to empirically assess the significance of gene–gene or gene–environment
interactions on growth trajectories under the likelihood framework. We applied a well-
developed and biologically meaningful mathematical function to model growth curves,
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which incorporates the initial and limiting values as well as the relative growth rate. With
this growth function adopted, SDA, which measures the strength of the interaction, is a
closed-form function of the parameters. Therefore, we also derived the Wald test for testing
the interactions. We note that for other types of growth functions when there may not be a
closed-form expression for SDA, it will be difficult to obtain the theoretical distribution of
the estimated SDA under the null hypothesis. In such cases, the proposed parametric
bootstrap will be a natural choice. The proposed method is demonstrated to be feasible and
robust; and provides accurate estimates as well as good powers through extensive
simulations. A real data application on head circumference measured through birth to age 7
from a birth cohort study currently being conducted in Krakow, Poland by CCCEH
identified three markers, rs162549, rs1056836, and GSTT1, deletion to significantly modify
the effects of the environmental exposure on head circumference growth trajectories. We
note that GSTT1 deletion is an important gene deletion and has found to modify the risk of
colorectal cancer [Csejtei et al., 2008]. As the Polish cohort is being followed up to an older
age, more head circumference measurements will be collected. With which we expect to
have more accurate parameter estimates and a better power.

Although we focused on detecting gene–environment interactions on head circumference
growth trajectories, the proposed method is readily applied to other growth curves, such as
weight and height growth trajectories. In the current study, we assumed the genotyped
markers are putative quantitative trait loci (QTL). The proposed method to assess
significance of interactions could be readily extended by considering flanking markers with
the well-developed QTL methods.
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APPENDIX: DERIVATION OF THE WALD TEST STATISTIC
Let θ = (a00, b00, c00, a01, b01, c01, a10, b10, c10, a11, b11, c11). Then for the specific growth
function (2), SDA has a closed-form as a function of θ:

where

We will show later that  and ( ) are
asymptotically independent. Therefore, the Wald statistic for testing

Here In(θ) is the information matrix corresponding to θ, and
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where

Let rijk = yi – μjk = (rijk(0)), ... , rijk(Li–1)), then the log likelihood

The information matrix for η is . First, we have

Note that  is a function of the parameters, and (σ, ρ) only exists in , so 

and  are both linear functions of (rijk(0), . . . , rijk(Li–1)). Since E[rijk] = 0, we have

Therefore, âjk are asymptotically independent of  and . It is also true for b̂jk and ĉjk. Also
note that

and

so
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and

It is also true for other second derivatives with respect to the mean parameters.

Therefore

where

and
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Fig. 1.
Significant gene–environment interactions between markers rs1056836/GSTT1 deletion and
environmental exposure on head circumference growth trajectories with the Polish cohort
using the proposed method.
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TABLE II

Parameter settings under the null hypothesis with no gene–environment interactions on head circumference
growth trajectories for Type I error analysis

Parameter set 1 Parameter set 2

a 00 52.94 50.00

b 00 0.55 0.48

c 00 0.84 0.84

a 01 52.6 50.58

b 01 0.54 0.5

c 01 0.82 0.83

a 10 53.5 50.44

b 10 0.57 0.49

c 10 0.75 0.82

a 11 52.5 50.95

b 11 0.53 0.48

c 11 0.85 0.79

σ 2 1.5 1.5

ρ 0 67 0.67
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TABLE IV

Parameter settings for power analysis

Interaction effect size SDA = 2.5 SDA = 3.5 SDA = 5 SDA = 10

Part I: Parameter settings by varying a jk

a 00 52.00 52.00 51.50 51.50

b 00 0.51 0.51 0.51 0.51

c 00 0.82 0.82 0.82 0.82

a 01 53.13 53.01 52.33 51.79

b 01 0.55 0.55 0.55 0.56

c 01 0.84 0.84 0.84 0.84

a 10 52.5 52.5 52.5 52.5

b 10 0.53 0.53 0.53 0.53

c 10 0.85 0.85 0.85 0.85

a 11 54.5 54.5 54.5 54.5

b 11 0.58 0.58 0.58 0.58

c 11 0.75 0.75 0.75 0.75

σ 2 1.5 1.5 1.5 1.5

ρ 0.67 0.67 0.67 0.67

Part II: Parameter settings by varying b jk and c jk

a 00 52.01 51.98 52.00 52.01

b 00 0.53 0.53 0.53 0.53

c 00 0.8 0.8 0.8 0.8

a 01 53 53 53 53

b 01 0.55 0.55 0.55 0.55

c 01 0.78 0.78 0.78 0.76

a 10 52.5 52.5 52.5 52.5

b 10 0.53 0.53 0.53 0.53

c 10 0.85 0.87 0.9 0.77

a 11 53.5 53.5 53.5 53.5

b 11 0.57 0.57 0.57 0.57

c 11 0.93 1 1.1 1.1

σ 2 1.5 1.5 1.5 1.5

ρ 0.67 0.67 0.67 0.67
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TABLE VI

Chromosomal positions and gene locations of the 15 markers from the selected candidate genes

Gene SNP rs Num Alleles Chr. Position (bp)

CYP1A1 rs2198843 C/G 15 72,788,283

rs1456432 A/G 15 72,790,104

rs4646421 T/C 15 72,803,245

rs2606345 T/G 15 72,804,229

rs7495708 G/A 15 72,806,896

rs2472299 C/T 15 72,820,453

CYP1B1 rs162549 T/A 2 38,148,960

rs1056837 T/C 2 38,151,654

rs1056836 G/C 2 38,151,707

rs162560 A/G 2 38,153,019

rs10012 C/G 2 38,155,894

rs2617266 C/T 2 38,156,048

GSTT2 rs2719 T/G 22 22,629,757

rs140194 G/A 22 22,655,095

GSTT1 NA Gene deletion 22 22,706,128
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TABLE VII

Estimated SDAs and P-values from 1,000 parametric bootstraps at 15 candidate markers

Gene SNP rs Num |SDA|
* P-values from the parametric bootstrap P-values from the Wald test

CYP1A1 rs2198843 0.58 0.760 0.842

rs1456432 1.44 0.584 0.532

rs4646421 5.08 0.061 0.087

rs2606345 0.19 0.925 0.947

rs7495708 0.75 0.841 0.830

rs2472299 3.94 0.110 0.107

CYP1B1 rs162549 5.08 0.032** 0.113

rs1056837 4.67 0.148 0.065

rs1056836 5.57 0.047** 0.022**

rs162560 1.62 0.568 0.533

rs10012 4.16 0.073 0.194

rs2617266 3.73 0.068 0.058

GSTT2 rs2719 1.99 0.410 0.589

rs140194 3.22 0.175 0.165

GSTT1 NA 10.91 0.002** 0.006**

*
Absolute value.

**
Significant at P < 0.05.
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